vTomb Logo

Python 初級 - 機器學習:scikit-learn - classification 分類|AI|人工智能|數據分析|教學|廣東話 Video

Patreon: https://www.patreon.com/kfsoft

Practical Machine Learning with scikit-learn (predictive data analysis)
1) Machine Learing concepts
- revision: overfit, metrics
2) Classification
- demo 1: Image (handwritten digits)
- demo 2: Text (spam filter with naive bayes)


00:00 Introduction
01:30 PART 1: ML concepts review
00:53 Input X, y
05:00 Generalization & overfitting
09:44 Evaluation metrics
15:17 PART 2A - DEMO 1. handwritten digits images classification
16:18 Load digits dataset
19:54 Show images
22:25 Train_test_split
24:55 SVM vs KNN
27:59 SVM error = classification error + margin error
32:08 SVM kernel - non-linear decision boundaries
34:06 SVC training & evaluation
39:48 Logistic Regression
42:41 Evaluate multiple algorithms
50:08 CV: cross_val_score(), cross_validate()
53:24 Hyperparameter tuning: GridSearchCV()
01:00:10 RandomizedSearchCV()
01:03:17 PART 2B - DEMO 2. text classification (spam filter)
01:05:02 CountVectorizer - text column to word-counter columns
01:11:49 Chinese word tokenization: jieba
01:15:40 Naive Bayes
01:17:48 Workflow of text classification
01:21:14 Manual calculations
01:26:44 Complete example - Read dataset
01:28:16 Remove Null value
01:29:28 Train_test_split
01:30:45 Fit countVectorizer & transform data (text to counter conversion)
01:35:58 Fit MultinomialNB (text classification)
01:40:41 Model evaluation
01:42:26 Compute baseline accuracy
01:47:05 Confusion matrix
01:48:36 ROC curve
01:53:40 Save and load trained vectorizer and trained naive bayes model with Joblib
01:54:50 Apply trained vectorizer and trained naive bayes model on unseen data
01:56:13 Summary & conclusion

Python入門:第1課 - PyCharm + Data Types https://youtu.be/s9toTBXQSPE
Python入門:第2課 - Python containers (1): List, Tuple https://youtu.be/7hm0zHgEGZ4
Python入門:第3課 - Python containers (2): Dictionary & Set https://youtu.be/7Jvfd6qFLzU
Python入門:第4課 - If-Else, Looping, Try-except https://youtu.be/sXdh5L5rcX0
Python入門:第5課 - Function + File https://youtu.be/rk8kU3no5No
Python入門:第6課 - Class and Object https://youtu.be/HPb0Lg3FQfM
Python入門:第7課 - URL, JSON, Sqlite https://youtu.be/93lOZTxJtrs
Python入門:第8課 - 用Flask進行Web開發 https://youtu.be/Z4CR3rwVkGc
Python入門:第9課 - Flask + DB ORM https://youtu.be/ZQoBdEH1zow
Python入門:第10課 - Flask補充1 https://youtu.be/AC23QWvFNWI
Python入門:第11課 - Flask補充2 https://youtu.be/-PkZ8sGhm-U
Python入門:Project 2 - Password generator 密碼生成器 https://youtu.be/5miejVDO9_w
Python初級:openpyxl - 讀寫 MS Excel 文件 https://youtu.be/tjcJV2fur5g
Python初級:python-docx - 讀寫 MS Word 文件 https://youtu.be/PEKWb5R3sSU

Python入門 - 數據科學 - Jupyter Lab & Notebook 安裝+入門教程 https://youtu.be/niWD8kxgpH0
Python入門 - 數據科學 - Anaconda + PyCharm 安裝 https://youtu.be/H4ihRvtdY7M
Python初級 - 數據科學 - Numpy入門 https://youtu.be/t7ygnafk760
Python初級 - 數據科學 - Pandas入門 https://youtu.be/ZYjhM7J9eFQ
Python初級 - 數據科學 - Pandas時間 + 圖表 https://youtu.be/jrd8shHEVFQ
Python初級 - 數據科學 - Pandas類別 + 樣式 https://youtu.be/4ntwbAWnKbg

Database初級:SQL入門 https://youtu.be/OtM74u3Fbw0
Database初級:JOIN連接 https://youtu.be/tpDvgr7qHsw
Database初級:MongoDB入門 https://youtu.be/XTqW3oOt3Ps

Python初級 - 機器學習 - Scikit-learn 入門 https://youtu.be/3m8Bb01uNNE
Python初級 - 機器學習 - Scikit-learn - Regression 回歸 https://youtu.be/QyYZT8o-f3U
Python初級 - 機器學習 - Scikit-learn - Classification 分類 https://youtu.be/JKn0OoHSoRo
Python初級 - 機器學習 - Scikit-learn - Clustering 聚類+降維 https://youtu.be/UgXyK-k-CgM

150 chances to become an millionaire

150 chances to become an millionaire


#big wins#winners#games#casinos

About the Site 🌐

This site provides links to random videos hosted at YouTube, with the emphasis on random. 🎥

Origins of the Idea 🌱

The original idea for this site stemmed from the need to benchmark the popularity of a video against the general population of YouTube videos. 🧠

Challenges Faced 🤔

Obtaining a large sample of videos was crucial for accurate ranking, but YouTube lacks a direct method to gather random video IDs.

Even searching for random strings on YouTube doesn't yield truly random results, complicating the process further. 🔍

Creating Truly Random Links 🛠️

The YouTube API offers additional functions enabling the discovery of more random videos. Through inventive techniques and a touch of space-time manipulation, we've achieved a process yielding nearly 100% random links to YouTube videos.

About YouTube 📺

YouTube, an American video-sharing website based in San Bruno, California, offers a diverse range of user-generated and corporate media content. 🌟

Content and Users 🎵

Users can upload, view, rate, share, and comment on videos, with content spanning video clips, music videos, live streams, and more.

While most content is uploaded by individuals, media corporations like CBS and the BBC also contribute. Unregistered users can watch videos, while registered users enjoy additional privileges such as uploading unlimited videos and adding comments.

Monetization and Impact 🤑

YouTube and creators earn revenue through Google AdSense, with most videos free to view. Premium channels and subscription services like YouTube Music and YouTube Premium offer ad-free streaming.

As of February 2017, over 400 hours of content were uploaded to YouTube every minute, with the site ranking as the second-most popular globally. By May 2019, this figure exceeded 500 hours per minute. 📈

List of ours generators⚡

Random YouTube Videos Generator

Random Film and Animation Video Generator

Random Autos and Vehicles Video Generator

Random Music Video Generator

Random Pets and Animals Video Generator

Random Sports Video Generator

Random Travel and Events Video Generator

Random Gaming Video Generator

Random People and Blogs Video Generator

Random Comedy Video Generator

Random Entertainment Video Generator

Random News and Politics Video Generator

Random Howto and Style Video Generator

Random Education Video Generator

Random Science and Technology Video Generator

Random Nonprofits and Activism Video Generator

By using our services, you agree to our Privacy Policy.
Alternative random YouTube videos generator: YouTuBeRandom
vTomb © 2024
By using our services, you agree to our Privacy Policy.