# Python 初級 - 數據科學：pandas 時間 + 圖表教程|股票|數據分析|Data Science|教學|廣東話 Video

Patreon: https://www.patreon.com/kfsoft
Doing data science with python:
1) Pandas Time API
2) Plot Stock charts
- Moving average, candlestick, etc.

Files: https://github.com/learn10kYear/learn-pandas/tree/master/lab2

00:00 PART 1 Intro - Time - 1) python datetime 2) numpy datetime64 3) pandas timestamp
04:00 Time API: python datetime (easy to use, but slow)
12:28 Time API: numpy datetime64 (fast, vectorized computation)
18:20 Time API: pandas timestamp (python datetime + numpy datetime64 - fast and easy to use)
22:18 Time API: timestamp + TimedeltaIndex
25:55 Time Index: 1) DatetimeIndex 2) PeriodIndex 3) TimedeltaIndex
27:24 Time Index: Create DatetimeIndex(1) - pd.DatetimeIndex()
29:10 Time Index: Create DatetimeIndex(2) - pd.to_datetime()
30:54 Time Index: Use DatetimeIndex as index of a series
32:05 Time Index: filtering time index rows
33:43 Time Index: Convert a DatetimeIndex to a periodInde - datetimeIndex.to_period('D')
35:45 Time Index: TimedeltaIndex conversion & creation: pd.TimedeltaIndex()
40:39 Time Index: Range functions 1) pd.date_range() 2) pd.period_range() 3) pd.timedelta_range()
42:00 Time Index: pd.date_range() - DatetimeIndex
43:56 Time Index: pd.period_range() - PeriodIndex
44:55 Time Index: pd.timedelta_range() - TimedeltaIndex
46:33 Time Index: Time index as series index
47:21 PART1 Summary: 3 forms of time in Pandas, and their time index
01:04:17 PART 1 conclusion
01:05:32 PART 2 Intro: Charts - 1)read stock data 2) moving average 3) bollinger bands 4) candlestick
01:06:23 Charts: install packages (pandas_datareader / seaborn / mplfinance)
01:06:43 Charts: data source (yahoo / quandl)
01:09:31 Charts: stock dataframe
01:13:36 Charts: resampling - groupby a time range & do aggregate functions
01:19:41 Charts: plt.subplots(row, col)
01:24:41 Charts: asfreq('X') - return a Dataframe
01:28:56 Charts: shift(int)
01:31:47 Charts: moving average, rolling(window=size).mean()
01:35:39 Charts: bbands - moving average +/- std*n
01:42:31 Charts: candlestick chart - mplfinance.plot()
01:44:59 Summary & conclusion

Python入門：第1課 - PyCharm + Data Types https://youtu.be/s9toTBXQSPE
Python入門：第2課 - Python containers (1): List, Tuple https://youtu.be/7hm0zHgEGZ4
Python入門：第3課 - Python containers (2): Dictionary & Set https://youtu.be/7Jvfd6qFLzU
Python入門：第4課 - If-Else, Looping, Try-except https://youtu.be/sXdh5L5rcX0
Python入門：第5課 - Function + File https://youtu.be/rk8kU3no5No
Python入門：第6課 - Class and Object https://youtu.be/HPb0Lg3FQfM
Python入門：第7課 - URL, JSON, Sqlite https://youtu.be/93lOZTxJtrs
Python入門：第9課 - Flask + DB ORM https://youtu.be/ZQoBdEH1zow
Python入門：Apache 安裝Flask app - mod_wsgi https://youtu.be/E6dqWawzc14
Python入門：第12課 - GUI (Tkinter) + PyInstaller 打包EXE https://youtu.be/_-LKQvmG8Uc1
Python入門：第13課 - More loops - Iterable Vs Iterator https://youtu.be/xKPK6CRnBT4
Python入門：第14課 - More loops - Generator https://youtu.be/sl3seUetRkA

Python初級：第15課 - Web Scraping 靜態網頁抓取 https://youtu.be/_LRfuctPLds
Python初級：第16課 - Web Scraping 動態網頁抓取 https://youtu.be/lXwgSweHf5Q
Python初級：第18課 - if __name__ == '__main__' 入口點 https://youtu.be/ihDNLQOQrSk
Python初級：第19課 - Type hints 類型提示 https://youtu.be/Z_AF3K-BMBs
Python初級：第20課 - Decorator 裝飾器 https://youtu.be/mAyJI-proks
Python初級：第22課 - Multi-processing 多進程 https://youtu.be/yFdGhaxW_5o

Python初級：Django 入門 1 - Model + Admin Site https://youtu.be/en6NXFI6CsQ
Python初級：Django 入門 2 - Template + View https://youtu.be/en6NXFI6CsQ
Python初級：Django 入門 3 - 部署 https://youtu.be/GfMiJvbYk2k

Python初級：openpyxl - 讀寫 MS Excel 文件 https://youtu.be/tjcJV2fur5g
Python初級：python-docx - 讀寫 MS Word 文件 https://youtu.be/PEKWb5R3sSU

Python入門 - 數據科學 - Jupyter Lab & Notebook 安裝+入門教程 https://youtu.be/niWD8kxgpH0
Python入門 - 數據科學 - Anaconda + PyCharm 安裝 https://youtu.be/H4ihRvtdY7M
Python初級 - 數據科學 - Numpy入門 https://youtu.be/t7ygnafk760
Python初級 - 數據科學 - Pandas入門 https://youtu.be/ZYjhM7J9eFQ
Python初級 - 數據科學 - Pandas入門 (第二版 更新column部分) https://youtu.be/w76oa7YzvkY
Python初級 - 數據科學 - Pandas時間 + 圖表 https://youtu.be/jrd8shHEVFQ
Python初級 - 數據科學 - Pandas類別 + 樣式 https://youtu.be/4ntwbAWnKbg

Database初級：SQL入門 https://youtu.be/OtM74u3Fbw0
Database初級：JOIN連接 https://youtu.be/tpDvgr7qHsw
Database初級：MongoDB入門 https://youtu.be/XTqW3oOt3Ps

Python初級 - 機器學習 - Scikit-learn 入門 https://youtu.be/3m8Bb01uNNE
Python初級 - 機器學習 - Scikit-learn - Regression 回歸 https://youtu.be/QyYZT8o-f3U
Python初級 - 機器學習 - Scikit-learn - Classification 分類 https://youtu.be/JKn0OoHSoRo
Python初級 - 機器學習 - Scikit-learn - Clustering 聚類+降維 https://youtu.be/UgXyK-k-CgM

Python入門 - 技巧篇 - Debug 偵錯 / 除錯 / 調試 https://youtu.be/1uGdbaVGRBE
Python入門 - 工具篇 - PyCharm 10個必學功能 https://youtu.be/A8La270tpHI

https://kfsoft.info

## 150 chances to become an millionaire

wildsbet.com

This site provides links to random videos hosted at YouTube, with the emphasis on random. 🎥

## Origins of the Idea 🌱

The original idea for this site stemmed from the need to benchmark the popularity of a video against the general population of YouTube videos. 🧠

### Challenges Faced 🤔

Obtaining a large sample of videos was crucial for accurate ranking, but YouTube lacks a direct method to gather random video IDs.

Even searching for random strings on YouTube doesn't yield truly random results, complicating the process further. 🔍

### Creating Truly Random Links 🛠️

The YouTube API offers additional functions enabling the discovery of more random videos. Through inventive techniques and a touch of space-time manipulation, we've achieved a process yielding nearly 100% random links to YouTube videos.

YouTube, an American video-sharing website based in San Bruno, California, offers a diverse range of user-generated and corporate media content. 🌟

### Content and Users 🎵

Users can upload, view, rate, share, and comment on videos, with content spanning video clips, music videos, live streams, and more.

While most content is uploaded by individuals, media corporations like CBS and the BBC also contribute. Unregistered users can watch videos, while registered users enjoy additional privileges such as uploading unlimited videos and adding comments.

### Monetization and Impact 🤑

As of February 2017, over 400 hours of content were uploaded to YouTube every minute, with the site ranking as the second-most popular globally. By May 2019, this figure exceeded 500 hours per minute. 📈

## List of ours generators⚡

Random Film and Animation Video Generator

Random Autos and Vehicles Video Generator

Random Music Video Generator

Random Pets and Animals Video Generator

Random Sports Video Generator

Random Travel and Events Video Generator

Random Gaming Video Generator

Random People and Blogs Video Generator

Random Comedy Video Generator

Random Entertainment Video Generator

Random News and Politics Video Generator

Random Howto and Style Video Generator

Random Education Video Generator

Random Science and Technology Video Generator

Random Nonprofits and Activism Video Generator