Python 初級 - 機器學習：scikit-learn - regression 回歸|AI|人工智能|數據分析|教學|廣東話 Video

Patreon: https://www.patreon.com/kfsoft

Practical Machine Learning with scikit-learn (predictive data analysis)
1) Machine Learing concepts
- overfit / underfit, metrics
2) Regression
- demo 1: Boston housing dataset (train & evaluate multiple models)
- demo 2: Tips dataset (pre-processing)

Source: https://github.com/learn10kYear/learn-pandas/blob/master/sklearn2/

00:00 Introduction
01:59 Revision of last lesson
03:58 CONCEPT: ML concepts, data - X & y
08:35 Model parameters VS Hyperparameters
12:35 Generalization
14:34 Challenges 1: data
15:26 Challenges 2&3: overfit & underfit
20:38 Model evaluation: train_test_split()
22:25 Model evaluation: K-Fold cross-validation (CV)
24:50 Metrics - regression: MAE, MSE, RMSE
26:59 Metrics - classification: accuracy, confusion matrix, precision, recall
35:06 DEMO 1 - Boston housing dataset
35:55 Dataset descriptions
40:13 Analyze the dataset with pandas
42:30 Plot: boxplot, histogram, pairplot, jointplot
46:50 Step 1: Prepare X, y
48:11 Data Scaling: StandardScaler / MinMaxScaler
52:08 train_test_split()
54:22 Step 2 & 3: Training & Evaluation
54:36 Decision tree
55:11 Random forest (ensemble method)
57:48 List of models
01:00:00 Training (training set), and evaluation (testing set)
01:05:10 Cross Validation: cross_val_score()
01:09:24 Cross Validation: cross_validate()
01:11:16 Compute RMSE of different models with cross validation
01:13:07 Step 4: Prediction
01:16:13 DEMO 2 - Tips dataset (Mixed data)
01:17:36 Proprocessing intro - SimpleImputer, Encoder, pipeline, columnTransformer
01:19:54 Read dataset & plot charts
01:22:00 Step 1: SimpleImputer to remove NaN values
01:23:57 Text-to-Numeric: Categories without order - OneHotEncoder
01:25:08 Text-to-Numeric: Categories with order - OrdinalEncoder
01:26:33 Pandas.get_dummies(X)
01:28:58 Pipeline
01:31:44 ColumnTransformer
01:35:45 train_test_split
01:35:55 Step 2 & 3: Training & Evaluation
01:36:14 Plot tree method 1: plot_tree()
01:42:56 Plot tree method 2: export_graphviz()
01:46:15 Feature importances
01:47:26 Step 4: Prediction
01:50:23 Summary & conclusion

Python入門：第1課 - PyCharm + Data Types https://youtu.be/s9toTBXQSPE
Python入門：第2課 - Python containers (1): List, Tuple https://youtu.be/7hm0zHgEGZ4
Python入門：第3課 - Python containers (2): Dictionary & Set https://youtu.be/7Jvfd6qFLzU
Python入門：第4課 - If-Else, Looping, Try-except https://youtu.be/sXdh5L5rcX0
Python入門：第5課 - Function + File https://youtu.be/rk8kU3no5No
Python入門：第6課 - Class and Object https://youtu.be/HPb0Lg3FQfM
Python入門：第7課 - URL, JSON, Sqlite https://youtu.be/93lOZTxJtrs
Python入門：第9課 - Flask + DB ORM https://youtu.be/ZQoBdEH1zow
Python入門：Project 2 - Password generator 密碼生成器 https://youtu.be/5miejVDO9_w
Python初級：openpyxl - 讀寫 MS Excel 文件 https://youtu.be/tjcJV2fur5g
Python初級：python-docx - 讀寫 MS Word 文件 https://youtu.be/PEKWb5R3sSU

Python入門 - 數據科學 - Jupyter Lab & Notebook 安裝+入門教程 https://youtu.be/niWD8kxgpH0
Python入門 - 數據科學 - Anaconda + PyCharm 安裝 https://youtu.be/H4ihRvtdY7M
Python初級 - 數據科學 - Numpy入門 https://youtu.be/t7ygnafk760
Python初級 - 數據科學 - Pandas入門 https://youtu.be/ZYjhM7J9eFQ
Python初級 - 數據科學 - Pandas時間 + 圖表 https://youtu.be/jrd8shHEVFQ
Python初級 - 數據科學 - Pandas類別 + 樣式 https://youtu.be/4ntwbAWnKbg

Database初級：SQL入門 https://youtu.be/OtM74u3Fbw0
Database初級：JOIN連接 https://youtu.be/tpDvgr7qHsw
Database初級：MongoDB入門 https://youtu.be/XTqW3oOt3Ps

Python初級 - 機器學習 - Scikit-learn 入門 https://youtu.be/3m8Bb01uNNE
Python初級 - 機器學習 - Scikit-learn - Regression 回歸 https://youtu.be/QyYZT8o-f3U
Python初級 - 機器學習 - Scikit-learn - Classification 分類 https://youtu.be/JKn0OoHSoRo
Python初級 - 機器學習 - Scikit-learn - Clustering 聚類+降維 https://youtu.be/UgXyK-k-CgM

https://kfsoft.info

150 chances to become an millionaire

wildsbet.com

This site provides links to random videos hosted at YouTube, with the emphasis on random. 🎥

Origins of the Idea 🌱

The original idea for this site stemmed from the need to benchmark the popularity of a video against the general population of YouTube videos. 🧠

Challenges Faced 🤔

Obtaining a large sample of videos was crucial for accurate ranking, but YouTube lacks a direct method to gather random video IDs.

Even searching for random strings on YouTube doesn't yield truly random results, complicating the process further. 🔍

The YouTube API offers additional functions enabling the discovery of more random videos. Through inventive techniques and a touch of space-time manipulation, we've achieved a process yielding nearly 100% random links to YouTube videos.

YouTube, an American video-sharing website based in San Bruno, California, offers a diverse range of user-generated and corporate media content. 🌟

Content and Users 🎵

Users can upload, view, rate, share, and comment on videos, with content spanning video clips, music videos, live streams, and more.

While most content is uploaded by individuals, media corporations like CBS and the BBC also contribute. Unregistered users can watch videos, while registered users enjoy additional privileges such as uploading unlimited videos and adding comments.

Monetization and Impact 🤑

As of February 2017, over 400 hours of content were uploaded to YouTube every minute, with the site ranking as the second-most popular globally. By May 2019, this figure exceeded 500 hours per minute. 📈

List of ours generators⚡

Random Film and Animation Video Generator

Random Autos and Vehicles Video Generator

Random Music Video Generator

Random Pets and Animals Video Generator

Random Sports Video Generator

Random Travel and Events Video Generator

Random Gaming Video Generator

Random People and Blogs Video Generator

Random Comedy Video Generator

Random Entertainment Video Generator

Random News and Politics Video Generator

Random Howto and Style Video Generator

Random Education Video Generator

Random Science and Technology Video Generator

Random Nonprofits and Activism Video Generator