vTomb Logo

Python 初級 - 數據科學:3小時 pandas 入門教程 - 第2版|數據分析|Data Science|教學|廣東話 Video

Patreon: https://www.patreon.com/kfsoft

* 該影片為第2版,加入/重製了約1小時之新內容,擴展了Column部分
* This is 2nd edition of this tutorial, it expands the column part: filter(), replace(), apply(), applymap() & map()

Doing data science with python:
1) Pandas basics: Series & DataFrame
2) Tips dataset, SQL equivalent pandas methods

Files: https://github.com/learn10kYear/learn-pandas/tree/master/lab1
Cheat sheet from pandas.pydata.org: https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf

00:00 Intro
00:34 PART1 - Pandas basics: Tubular data, Series & DataFrame
02:27 Install & import pandas
04:22 Series: 1d-list structure, with index
10:28 DataFrame: 2d-table structure, with index & columns
25:19 DataFrame - col: dot notation, fancy index, filter() by columns
30:16 DataFrame - col: add col
32:57 DataFrame - col: filter() - col name / index name
38:15 DataFrame - col: mean(), medium(), max(), idxmax(), update
42:54 DataFrame - col: update data
55:23 DataFrame - col: common str funcs
01:06:22 DataFrame - col: replace func - series.replace()
01:15:16 DataFrame - col: replace func - df.replace()
01:19:32 DataFrame - col: 3 update funcs - Call any functions on each cell / col / row to update data
01:20:34 DataFrame - col: 1a) apply() for series's items & df's columns
01:27:52 DataFrame - col: 1b) apply() - function arguments, lambda
01:32:24 DataFrame - col: 1c) apply() - axis=columns/index
01:35:32 DataFrame - col: 1d) apply() - result_type (for multi-values results, AND df.apply())
01:40:08 DataFrame - col: 2) applymap() - df only, on every element of a df
01:42:03 DataFrame - col: 3) map() - series only, on every element of a series, accept dict & func
01:45:50 DataFrame - col: drop() to a col
01:48:27 DataFrame - row: slice, filter() by rows
01:52:56 DataFrame - row: 2 indexers - LOC (label), ILOC (position)
01:53:45 DataFrame - row: loc (label) indexer - df.loc[row, col]
02:00:13 DataFrame - row: iloc (position) indexer - df.iloc[row, col]
02:04:32 DataFrame - row: use boolean mask to retrieve records
02:08:16 DataFrame - row: query() to retrieve records
02:12:46 DataFrame - row: missing values handling, isna(), isnull(), notna(), notnull(), fillna()
02:15:33 DataFrame - row: groupby() and agg()
02:18:23 DataFrame - row: groupby multiple columns VS pivot_table()
02:23:04 DataFrame - row: sort_values(), by multiple columns with different directions
02:25:11 PART 2 - Tips dataset: use pandas on a dataset
02:26:58 Tips Dataset: import packages & read tips dataset
02:31:52 SQL equivalent - SELECT: fancy index, filter(), loc, iloc
02:35:24 SQL equivalent - SELECT: with new column
02:36:33 SQL equivalent - WHERE: boolean mask, query()
02:38:12 SQL equivalent - WHERE multiple conditions: and, or
02:41:10 SQL equivalent - NULL handling: isnull(), isna(), notna()
02:42:23 SQL equivalent - GROUPBY: single field groupby, and apply agg functions
02:46:11 SQL equivalent - GROUPBY: multiple fields groupby
02:47:19 SQL equivalent - JOIN: inner (intersection) / outer (union) - on='column', how='inner/outer'
02:50:29 SQL equivalent - JOIN: left (keep LHS) / right (keep RHS) - on='column', how='left/right'
02:52:05 SQL equivalent - UNION: pd.concat([ds1, ds2]).drop_doplicates()
02:53:17 SQL equivalent - UPDATE: df.loc, map()
02:56:04 SQL equivalent - DELETE: boolean mask method
02:59:01 Save DataFrame to a file
03:00:25 Plot graph - df.plot()
03:00:56 Summary

Python入門:第1課 - PyCharm + Data Types https://youtu.be/s9toTBXQSPE
Python入門:第2課 - Python containers (1): List, Tuple https://youtu.be/7hm0zHgEGZ4
Python入門:第3課 - Python containers (2): Dictionary & Set https://youtu.be/7Jvfd6qFLzU
Python入門:第4課 - If-Else, Looping, Try-except https://youtu.be/sXdh5L5rcX0
Python入門:第5課 - Function + File https://youtu.be/rk8kU3no5No
Python入門:第6課 - Class and Object https://youtu.be/HPb0Lg3FQfM
Python入門:第7課 - URL, JSON, Sqlite https://youtu.be/93lOZTxJtrs

Python初級:第15課 - Web Scraping 靜態網頁抓取 https://youtu.be/_LRfuctPLds
Python初級:第16課 - Web Scraping 動態網頁抓取 https://youtu.be/lXwgSweHf5Q
Python初級:第17課 - Pygame貪食蛇遊戲 https://youtu.be/kaDEcF5LTWU

Python入門 - 數據科學 - Jupyter Lab & Notebook 安裝+入門教程 https://youtu.be/niWD8kxgpH0
Python入門 - 數據科學 - Anaconda + PyCharm 安裝 https://youtu.be/H4ihRvtdY7M
Python初級 - 數據科學 - Numpy入門 https://youtu.be/t7ygnafk760
Python初級 - 數據科學 - Pandas入門 https://youtu.be/ZYjhM7J9eFQ
Python初級 - 數據科學 - Pandas入門 (第二版 更新column部分) https://youtu.be/w76oa7YzvkY
Python初級 - 數據科學 - Pandas時間 + 圖表 https://youtu.be/jrd8shHEVFQ
Python初級 - 數據科學 - Pandas類別 + 樣式 https://youtu.be/4ntwbAWnKbg

Database初級:SQL入門 https://youtu.be/OtM74u3Fbw0
Database初級:JOIN連接 https://youtu.be/tpDvgr7qHsw
Database初級:MongoDB入門 https://youtu.be/XTqW3oOt3Ps

Python初級 - 機器學習 - Scikit-learn 入門 https://youtu.be/3m8Bb01uNNE
Python初級 - 機器學習 - Scikit-learn - Regression 回歸 https://youtu.be/QyYZT8o-f3U
Python初級 - 機器學習 - Scikit-learn - Classification 分類 https://youtu.be/JKn0OoHSoRo
Python初級 - 機器學習 - Scikit-learn - Clustering 聚類+降維 https://youtu.be/UgXyK-k-CgM

150 chances to become an millionaire

150 chances to become an millionaire


#big wins#winners#games#casinos

About the Site 🌐

This site provides links to random videos hosted at YouTube, with the emphasis on random. 🎥

Origins of the Idea 🌱

The original idea for this site stemmed from the need to benchmark the popularity of a video against the general population of YouTube videos. 🧠

Challenges Faced 🤔

Obtaining a large sample of videos was crucial for accurate ranking, but YouTube lacks a direct method to gather random video IDs.

Even searching for random strings on YouTube doesn't yield truly random results, complicating the process further. 🔍

Creating Truly Random Links 🛠️

The YouTube API offers additional functions enabling the discovery of more random videos. Through inventive techniques and a touch of space-time manipulation, we've achieved a process yielding nearly 100% random links to YouTube videos.

About YouTube 📺

YouTube, an American video-sharing website based in San Bruno, California, offers a diverse range of user-generated and corporate media content. 🌟

Content and Users 🎵

Users can upload, view, rate, share, and comment on videos, with content spanning video clips, music videos, live streams, and more.

While most content is uploaded by individuals, media corporations like CBS and the BBC also contribute. Unregistered users can watch videos, while registered users enjoy additional privileges such as uploading unlimited videos and adding comments.

Monetization and Impact 🤑

YouTube and creators earn revenue through Google AdSense, with most videos free to view. Premium channels and subscription services like YouTube Music and YouTube Premium offer ad-free streaming.

As of February 2017, over 400 hours of content were uploaded to YouTube every minute, with the site ranking as the second-most popular globally. By May 2019, this figure exceeded 500 hours per minute. 📈

List of ours generators⚡

Random YouTube Videos Generator

Random Film and Animation Video Generator

Random Autos and Vehicles Video Generator

Random Music Video Generator

Random Pets and Animals Video Generator

Random Sports Video Generator

Random Travel and Events Video Generator

Random Gaming Video Generator

Random People and Blogs Video Generator

Random Comedy Video Generator

Random Entertainment Video Generator

Random News and Politics Video Generator

Random Howto and Style Video Generator

Random Education Video Generator

Random Science and Technology Video Generator

Random Nonprofits and Activism Video Generator

By using our services, you agree to our Privacy Policy.
Alternative random YouTube videos generator: YouTuBeRandom
vTomb © 2024
By using our services, you agree to our Privacy Policy.